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II.  Random Processes
• Random signal/sequence definition
• Signal mean, variance, autocorrelation & autocovariance sequence,

normalized cross-correlation sequence
• Statistical characterization of random signals

– Stationarity
– Wide sense stationarity (wss)
– Jointly wide sense stationarity (jointly wss)
– Signal average
– Ergodicity
– I.I.D. Random process
– Concept of white noise, Bernouilli process, Random walk

• Random process properties
– Orthogonality
– Wide sense cyclostationarity

• Periodic random process
– Definition
– Properties

• Correlation function properties
• Application to target range detection
• Correlation matrix properties for a stationary process
• How to estimate correlation lags; biased/unbiased estimator issues
• Frequency domain description for a stationary process

– Power spectral density (PSD) definition & properties
• Complex spectral density function: definition & properties
• Innovation Representation of random vectors

– DKLT
– Applications
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II.  Random Processes

•  Consider sequence x[n] = x(n,�)   �  for a fixed n  x[n]
is a RV

•  x[n] :  discrete random signal/ random sequence

•  x(n,�) for fixed �:  realization of the random process
    (trial)

�  Random Signal/Sequence:
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Example: x(n,�����cos(�n/10), where ��U[0,1].
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�  Signal mean value (ensemble average):
 mx(n)=

�  Signal variance:
2 ( )x n� �

�  Signal autocorrelation sequence:

Rxx(n1,n2)=

�  Signal autocovariance sequence:

Cxx(n1,n2)=

n1
n

x[n]

n2

2 1n n� ��

lag
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�  Signal cross-correlation sequence:

Rxy(n1,n2)=

�  Normalized cross-correlation sequence:

�  Signal cross-covariance sequence:

Cxy(n1,n2)=

�xx(n1,n2)=
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•  Random signals are characterized by joint
    distribution (or density) of samples

•  Fx(x1, x2, …, xk, n1,     nk)

= Pr [x(n1) � x1, … x(nk) � xk]

•  F(.) is highly complex to compute - difficult to
obtain in practice

�  Statistical Characterization of Random
     Signals:

�  Stationarity:
  Definition:  a RP is said to be stationary if any

joint density or distribution function
depends only on the spacing between
samples, not where in the sequence
the samples occur

  Example: fx(x1, x2, …, xN; n1, …, nN)

          = fx(x1, x2, …, xN; n1+k …, nN+k)

for any value of k

If  x(n) is stationary for all orders N = 1, 2, …

      x(n) is said to be strict-sense stationary.
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Example: Stationary up to order 2 � wide-sense stationary.

�  Wide-Sense Stationarity:

�  Definition:  a RS x(n) is called wide-sense
stationary (WSS) if

(1) the mean is a constant independent of “n”

(2)  the autocorrelation depends only on the distance
       � = n1 	 n2 (i.e., x(n) is a seq. of uncorrelated RVs)

Consequence:  the variance is a constant independent of
“n”
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� Definition:  x[n] and y[n] are said to be w.s. jointly
     stationary if:

1) x[n] and y[n] are wss stationary

2) Rxy [n1, n0] = Rxy [n1 	 n0]

�  When x[n] and y[n] are w.s.j stationary:

 Rxy [n1, n0] = Rxy [n1 	 n0]  =

 Cxy [n1, n0] = Cxy [n1 	 n0] =

� Properties:

Rxy(k)=

Cxy(k)=

�  Wide-Sense Stationarity (con’t):
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� Example
Let x(n) be a real valued process of independent
variables each with mean m and variance �2

x.
1) Compute: Rx(k,n) & Cx(k,n)
2) Let y(n) be defined as:

y(n)=x(n)+x(n-1)
     Compute: Ry(k,n) & Cy(k,n)
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�  in many applications only one realization of
      a RP is available

�  in general, one single member doesn’t provide
      information about the statistics of the process

�        except when process is stationary +ergodic:
      statistical information can be derived from one
      realization of RP

�  Def:  a RP is called ergodic if:

all ensemble averages = all corresponding time
averages

�  Ergodicity in the mean:

     Def:  a RP is said to be ergodic in the mean if:

�  Ergodicity in correlation:

     Def:  a RP is said to be ergodic in correlation if:

�Ergodicity:

�Signal (time) Average:

<x[n]>=
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�  Example: Independent, Identically Distributed
(I.I.D.) Random Process (RP):
    A Random Process is said to be:

    . an independent process if:
     fx(x1, x2,…,xk;n1,…,nk) = f1(x1;n1)…fk(x2;nk)

     . if all RVs have the same pdf f(x) => x(n) is called I.I.D.

Note: I.I.D. processes have no memory, where a future
value would depend on past values

•   Mean of I.I.D. Process:

mx(n) =
  Autocovariance:

Cx(n1, n2) =

  Autocorrelation:

Rx(n1, n2) =
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� RP Example: White noise

Definition: A random sequence w(n) is called 
a white noise process with mean mw and 
variance 
�

w iff
E{w(n)}=mw
Rw(k)= ��

w(k)

Notes:
1) all frequencies contribute the same amount (as
in the case of white light, therefore the name of
“white noise”)

2) if the pdf of w(n) is Gaussian: it is called
“white Gaussian noise”
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�  RP Example: Bernoulli Process

a binary sequence 	 independent samples

•  Probabilistic description:

�  Pr [x(0)] = 1, x[1] = 1, x[2] = �1] =

�  is the process stationary?

n

x[n]

. . .

x[n] = 1      with probability P
       = �1    with probability (1 	 P)

�  for P = 1/2 process is called binary white
      noise

       Mean             Variance
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�Application of Bernouilli process:

 P[first 4 independent bits in a binary sequence are
1001] =



9/21/02 EC3410.FallFY03/MPF
15

�  RP Example:Random Walk

•  Consider a sequence of I.I.D. RVs  {Xi}

•  Define    Sn = X1 + X2 + . . . + Xn         n = 1, 2, . . .
            Sn = Sn�1 + Xn    � sum process

                   Mn=(1/n) Sn         � arithmetic mean process

•The process Sn is called random walk when
Xi = � 1 (Bernoulli RVs)

•  When P = 1/2 (for Bernoulli process) discrete
    Wiener process

Properties:

Sn has independent increments in non-overlapping
time intervals

1 2

3 2

n n

n n

S S

S S

� �

� �
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Random Walk:  General Character
•  Tends to have long runs of positive and negative
    values.

•  Length of runs increases with increasing time,
    but local behavior remains the same.

Example of Random Walk:
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�  A RP is said to be orthogonal if x[n] is a
      sequence of orthogonal RVs, which means:

Rx (n1, n2) =

�  A RP is said to be wide-sense (ws) cyclostationary
      if  � N such that

mx (n) =
Rx (n1, n2) =

Example of a w.s. cyclostationary process:

� Random Process Properties
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Example:  let x(n) be a zero-mean, uncorrelated
Gaussian sequence with variance

 what can we say about x(n)?
      (independent?, stationary?)

� �2 1x n� �
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Example:  let x(n) be a RP generated as:

    x(n) = x(n	1) + w(n) n � 0
x(	1) = 0

          with w(n) a stationary RP with mean mw and
          correlation sequence

a.  find the mean mx(n)

b.  is x(n) stationary?

� � � �2
w wR � ��� �
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Example:  let x(n) be a binary white noise process

a.  compute the mean mx(n)

b.  compute the correlation and covariance
     functions

c.  is x(n) stationary?
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Example:  let x(n) be a discrete Wiener process

a.  compute the mean and variance

b.  is the process stationary?  wss?
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Example:  let x(n) be a RP defined by a sequence of
         independent RVs with mean m and variance 
2

a.  Compute the mean of the RP

b.  Compute the correlation of the RP

c.  let

•  compute Ry(n)

•  is y(n) stationary?

� � � � � �
1 1
2

y n x n x n� � �
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�  Periodic Random Process

•  if x[n] is periodic,    x[n] =

•  Density function   fx [n0] x[n1] … x[nL] =

•  Mean

•  Correlation

•  Correlation for stationary periodic RP

Example: x[n]=Aexp(j(�n+�)), �~U[0,2�]
Compute Rx(k) and mx(k)
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�  Correlation Function Properties

(1)  Conjugate symmetry

(2)  Positive semi-definite property

(3)  Rx(k) max at k=0

(4)  High correlation            Low correlation

x[n]

Rx[n]

x[n]

Rx[n]
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Target

assume y(t) = x(t	T)

� Application to Radar Target Detection
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� Application to Tone Detection in Noise

Example:
Assume we have a sinusoidal random signal x[n] with variance
0.5 imbedded in wss white noise w[n] with variance 16 (Signal
and  no. The correlation sequence may be used to get
information on the properties of the periodic signal

a) Compute the SNR
b) Compute the expression for the correlation of the

noisy signal y[n]=x[n]+w[n].

Property: if the process x[n] is aperiodic then
lim [ ] 0k x xR k

� �
�
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� Correlation Matrix Properties for a
Stationary Process

� Recall: Rx = E [x xH]

�  Correlation Matrix for a Stationary Process

x[n]  stationary  �

Rx =

Assume x=[x(0),x(1)]T
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�  Correlation Matrix for a Periodic RP
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�  Correlation Matrix Properties

(1) Rx is Hermitian
(2) Rx is positive semi definite, i.e., �(Rx)
(3) Rx has an eigendecomposition of the form

Rx=U�UH

where: U is a unitary eigenvector matrix

           �  is a diagonal eigenvector matrix 

Assume x=[x(0),…,x(N-1)]T
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�  How to compute correlation estimates

      Assume

•  For discrete data:  x=[x (0),              , x (N)]T

•  Quality of estimate? ��find mean and variance
    of

(1)

�
�

� x (t) known t = 0 � t = T0

x (t) ergodic (why?)

�R k tx �a f �

�R k tx �a f �
E R kx

� a f �



9/21/02 EC3410.FallFY03/MPF
34

� �
� �
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~R k tx �a f �

� �xE R k T� �� �� �
�

Var ~R k T
N

R i R i k R i k

k

x

x x x

�a f
a f a f a f

�
�

� � �

�

��

�

�
1

1

0

2

Alternate Estimator:  Biased Estimator

Quality of estimate:

(1)

(2)
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bias of

x

x

R k

E R k

�

� �� �

� �� �

�

�

    Biased Estimator        Unbiased Estimator

Biased/Unbiased estimator Summary
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�  How to compute correlation matrix estimates
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�  Frequency Domain Description of
Stationary Processes

�  Power spectral density (PSD)

�  Example:  find the PSD of zero-mean w.s.s. x[n] with

� �xr a� �

�

� �
� �

j
x

x

S e

R

�

�

��
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�  PSD Properties

  Let x[n]  be a  stationary and periodic RP, then

1) Rx(k) is periodic with the same period

2) Sx(ej�) is periodic with period 2�

Proof:
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� PSD has three key properties:

(1)  P1 =     PSD Sx(ej�) is a real-valued periodic function
    of period 2� for any x[n]

    if x[n] is real then Sx(ej�) is also even

(2)  P2 =  the PSD Sx(ej�) is non-negative definite;
 I.e., Sx(ej�) � 0  --> see page 159, text

(3)  P3 =  the area under Sx(ej�) is non-negative and
 equals the energy of x[n]

Example:  White Noise
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Example:  Harmonic Process

•  Definition:  a harmonic process is defined as:

where M, {Ak}, {�k} are constants

          {�k} are pairwise independent RVs
           uniformly distributed over [0, 2�]

•  Compute

� � � �
1

cos ; 0
M

k k k k
k

x n A n� � �
�

� � ��

� �� � � � � �and , j
x xE x n R S e �

�
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Example:    given

         compute � �j
xS e �

� � 2 1xR � � �� �
�

�
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�  Complex Spectral Density Function

•  Symmetry property

•  Generic form for complex spectral density

�  General form:

�  Rational form:

� �

� �

x

x

S z

R

�

��
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�  Properties for rational form  (poles/zero
location)

�  Region of Convergence of Sx(z)

Complex process Real process
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Example:
         compute � �xS z

� � 2 1xR � � �� �
�

�
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�  Summary of Properties for Stationary x[n]

Definitions

Mean

Correlation

Covariance

Cross-Correlation

Cross-Covariance

PSD

Cross-PSD

Inter-relations

� �xC �� � �xyC ��

Properties

         Autocorrelation                                PSD
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Properties

         Cross-correlation                          Cross-PSD
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�Example:
         compute � �

� �
x

j
x

R

S e �

�

� � 0j nx n Ae A RV�

�
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�  Innovation Representation of Random
Vectors - the Discrete Karhunen-Loeve
Transform (DKLT)

• In many practical applications, it is beneficial to
represent a random sequence x with a linearly
equivalent sequence w consisting of uncorrelated
components (such sequence w is called the
innovation representation).
• In such cases, each component of the uncorrelated
sequence w can be viewed as adding new information
to the previous components.
• Applications exist in compression, classification,
etc...

� How to transform x into the innovation
representation

Assume x=[x(0),…x(N-1)]T is zero-mean
Questions:
(1) What does it mean for w to be uncorrelated ?

(2) What does “represent a random sequence x with a
linearly equivalent sequence w” mean ?
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Assume A=UH
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�DKLT Applications
DKLT is used in data compression  (speech/image coding)
as it allows for a lower dimensional representation of the
data.

Example: Assume
we have 200
samples of two-
dimensional data of
type x=[x1,x2].

Estimated correlation matrix is given by:
Rx=
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Reduced Basis
Selection Scheme IDKLTDKLT

x(n)

x(n)�

Compression set-up


